

**METABOLOMICS AND ANTI-INFLAMMATORY PROPERTIES EVALUATION OF
CYRTOCYMURA SCORPIOIDES**

**Paulo R. S. da Silva¹, Lara P. D M. Costa¹, Daniele de Oliveira Silva¹, Paula P. O. Salem¹,
Michael Murgu², Danielle F. Dias¹, Marisi G. Soares¹, Daniela A. Chagas de Paula¹**

paulo.santos@sou.unifal-mg.edu.br

1-Institute of Chemistry, Federal University of Alfenas, 37130-001, Alfenas, MG, Brazil.

2-Waters Corporation, 06455-020, Barueri, SP, Brazil.

The species *Cyrtocymura scorpioides* (Lam.) H.Rob. (Asteraceae), popularly known as “Piracá,” “Capixingui,” “enxuga,” or “erva-de-São Simão,” is widely used in traditional medicine. Its use has been reported for anti-inflammatory, antitumor, and other purposes¹. However, there are no in-depth studies on the chemical composition of this species, nor scientific evidence regarding its anti-inflammatory properties. Metabolomic analyses were conducted using analytical techniques such as ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry, which enables a comprehensive analysis of the chemical composition of samples. Metabolomic analysis, when combined with chemometric and pharmacological studies, have simplified the identification of secondary metabolites². The anti-inflammatory effects were evaluated *ex vivo* in human blood samples, with an emphasis on the analysis of the COX and LOX pathways, targeting Prostaglandin E₂ (from COX) and leukotriene B₄ (from LOX). The chemical characterization was performed by UHPLC-ESI-HRMS in positive mode with DIA acquisition, followed by data processing using the MZmine 4 software and subsequent annotation using *in house* databases and online platforms. The stem micro extract and the hexane fraction exhibited the most effective inhibition of inflammatory mediators, with approximately 25% inhibition of prostaglandin E₂ (PGE₂) observed for both samples, and 22% inhibition of leukotriene B₄ (LTB₄) for the micro extract, compared to the negative control. Twenty-four compounds were annotated according to confidence level 2 of the Metabolomics Standards Initiative (MSI), with a predominance of flavonoids and sesquiterpene lactones³.

Keywords: Metabolomics, PGE2, LTB4, Cytocymura

Acknowledgments: CAPES – Financing Code 001, FAPEMIG (Doctoral Fellowship Cota 11328, APQ02882-24, APQ-05218-23, APQ-00544-23, APQ-05607-24 and BPD-00760-22), CNPq (316204/2021-8, 406837/2021-0, 408115/2023-8), FAPESP (24/04606-5) and FINEP.

¹Paul, A.; de Boves Harrington, P. *TrAC Trends Anal. Chem.*, 2021, 135, 116165.

²Majolo, F. *et al.* *Phytochem. Lett.*, 2019, 31, 196–207.

³Machado, A. L. *et al.* *Quím. Nova*, 2013, 36 (4), 540–543.

Sociedade Brasileira de Química
Divisão de Produtos Naturais

